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Abstract

In elaborationg upon the recent thought-provoking

paper“Subjective probability in behavioral economics

and finance: A radical reformulation” by H. Joel Jef-

frey and Anthony O. Putman [5], we proceed to spec-

ify the calculus of their “probability (uncertainty) ap-

praisals” as possiblity measures, i.e., the “radical” re-

formulation of the usual calculus of subjective proba-

bilities is that of idempotent uncertainty. With pos-

sibility measures as quantitative uncertainty for sub-

jective probabilities, we discuss the necessary mariage

of possibility measures and Kolmogorov probability

measures in a new Bayesian analysis for economic ap-

plications.
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1 INTRODUCTION

As stated in the abstract, this paper
is about the recent thought-provoking
paper [5]. It is thought-provoking be-
cause it proposed a “radically new” way
to really understand the old notion of
subjective probability, from which ap-
plications, e.g., in decision-making in
social sciences, will be “radically differ-
ent”, say, more “compatible” with what
psychological experiments revealed (in
behavioral econometrics and finance).

As such, it is important to expose
the essentials of [5] to a large audi-
ence of econometricians. In fact, by do-
ing so, we accomplish several important
tasks, namely specifying the calculus of
subjective probabilities as (idempotent)
possibility as previously suggested [2],
and discussing the necessary mariage of
possibility calculus with standard Kol-
mogorov probability calculus, which is
needed in a “Bayesian” framework of
statistical inference.

Since the “beginning”, we are taught
that, in constrast to frequentist prob-
ability (Kolmogorov), subjective (or
Bayesian) probabilities are in our mind,
which are used as a mode of judge-
ment. When using subjective proba-
bilities in applications, such as in auc-
tions (as Bayesian games) or Bayesian
statistics, not only we need to manip-
ulate quantitative subjective probabil-
ity, but also combine subjective prob-
ability with frequentist probability (to
form Bayesian statistics).

While, the mathematical (language)
foundation for quantitative (frequen-
tist) probability is Kolmogorov’s axioms
(by analogy with measure theory), in-

cluding additivity, what are the axioms,
i.e., the calculus of subjective probabil-
ity, that the Bayesians use to establish
their Bayesian statistical theory?

Can you guess? “Imagine” if the cal-
culus of subjective probabilities is dif-
ferent than Kolmogorov probability cal-
culus! Then how can Bayesian anal-
ysis be carried out? Specifically, how
to incorporate prior information into a
frequentist framework? Well, we know
that, as stated again in [5], the stan-
dard “view” is that with respect to cal-
culus (of uncertainties), frequentist and
subjective probabilities are two sides of
the same coin, i.e., while their meanings
are different, their calculi are the same.
This allows Bayesian statistics to exist
to “beat” frequentist statistics in several
fronts, e.g., in hypothesis testing.

I can’t resist to point out an op-
posite situation: while the meaning
of the (intrinsic) uncertainty in quan-
tum mechanics is the same as that of
ordinary randomness, their calculi are
different, namely, quantum probabil-
ity is non-commutative whereas Kol-
mogorov probability is not (but, in
fact, quantum probability is simply a
non-commutative generalization of Kol-
mogorov probability).

Should we ask “why it is so?”. More
specifically, “Why subjective probabil-
ities are additive, or even σ−additive,
just like Kolmogorov probabilities?”.
Well, texts on subjective probability ex-
plain that, by using betting schemes,
they are so by existence of Dutch book
arguments for these properties.

Note that, although Bertrand Rus-
sel once wrote in 1929 “Probability is
the most important concept in mod-
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ern science, especially as nobody has
the slighest notion what it means”, peo-
ple equate uncertainty with probabil-
ity whose calculus is Kolmogorov. Thus,
“traditionally”, while subjective and ob-
jective probabilities are different man-
ifestations of uncertainty, people ma-
nipulate them according to the same
calculus. After Dennis Lindley attended
a seminar at UC Berkeley in 1981
in which both Lotfi Zadeh and Glenn
Shaffer talked about their non-additive
uncertainty measures (possibility mea-
sures, and belief functions, respec-
tively), he wrote [7] claiming that all
non-additive uncertainty measures are
inadmissible, i.e., the message is “we
cannot avoid probability” (where, of
course, again, by“probability”, we mean
additive set functions). It turns out that
Lindley’s message is not exactly what he
claimed! What he did show is that “Us-
ing scoring rule approach, an admissible
uncertainty measure must be a function
of a probability measure”. But then,
for example, Shaffer’s belief functions
which are non-additive, are functions of
probability measures, and hence admis-
sible in Lindley’s sense! A complete re-
sponse to Lindley’s paper was [4].

One more thing about the coexis-
tence of objective uncertainty (say, in
von Neumann-Morgenstern utility the-
ory) and subjective uncertainty (say,
in Savage’s subjective/qualitative prob-
ability theory): this is possible in appli-
cations since these two different types of
uncertainty are forced to obey the same
calculus. For a rigorous treatment, see
[6], where it reminded the reader that
“One warning: when mathematicians
use the term probability , they almost

always mean a σ−additive probability
measure defined on a σ−algebra”! It
is clear in [6] that uncertainty theo-
ries are proposed to be used in mod-
eling behavior of individuals in their
decision-making, and as such, e.g., in
physics, models of choice must be con-
firmed by experimental evidence: they
were not (See the last Chapter of
[6] on “The Experimental Evidence”).
Thus, the door was open ever since for
non-additive uncertainty measures. It
should be emphasized for statisticians
that Kolmogorov probability is just one
quantitative modeling of one type of un-
certainty. There are other types of un-
certainty whose modelings might not
be “probability”, i.e., not additive. Do
not equate uncertainty with probabil-
ity. How to find out reasonable quan-
titative theories of uncertainty? Well,
just follow physics (I mean quantum
mechanics)! Quantitative modeling of a
type of uncertainty is used to model the
behavior of something, and as such, a
proposed model must be tested by ex-
periments. The non-commutativity and
non-additivity of probability in quan-
tum mechanics, as observed in experi-
ments, led to the establishment of a firm
theory of quantum probability. In so-
cial sciences, including economics and fi-
nance, people make decisions under un-
certainty. Thus, it is so clear that any
quantitative theory of uncertainty must
be validated by experimental evidence.
The thought-provoking paper under re-
view is precisely in this scientific spirit.

Somewhat clearly (!) that statisti-
cians and econometricians are still not
aware of non-additive set functions
which were proposed to model various
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different types of uncertainty we face in
everyday decision-making, say in Arti-
ficial Intelligence, (not just one type of
uncertainty, traditionally attributed to
randomness or epistemic uncertainty, as
two sides of the same coin, i.e., obey-
ing the calculus of Kolmogorov proba-
bility theory), let alone fuzzy set the-
ory of Zadeh (1965, see [10] for a com-
plete update of the theory) from which
are founded concepts such as approxi-
mate reasoning, soft computing, gran-
ular computing, possibility theory (see
e.g., [1,3,13–16]). As we will see shortly,
the“radical reformulation”of the notion
of subjective probability (uncertainty)
in [5] is “probability appraisals” which
are nothing else than Zadeh’s “linguis-
tic variables” [17] in the context of fuzzy
set theory. In this context, it looks like
we are heading back into the territory
of fuzzy set theory which, since 1965,
only attracted computing and engineer-
ing fileds. Perhaps it will be so since, af-
ter all, there are “real” contributions of
fuzzy theory to social sciences, includ-
ing economics and finance.

The purpose of this present paper
is multifold: First, we elaborate of the
“radical reformulation” of [5] which we
believe that it was in a right direction
for improving methods in behavioral
economics and finance. Next, we place
this reformulation completely in the set-
ting of linguistic variables and granu-
lar information. Then, we complete [5]
by specifying a reasonable calculus of
subject probabilities, namely possibil-
ity measures (as opposed to probabil-
ity measures). Finally, we discuss a
“Bayesian” analysis in which possibil-
ity uncertainty coexists with probability

uncertainty.

2 UNCERTAINTY APPRAISALS

In a sense, as opposed to objective
uncertainty (quantitatively modeled as
frequentist probabilities), by subjective
uncertainty we mean the type of un-
certainties (e.g., epistemic uncertainty)
which cannot be modeled quantitatively
by a frequentist approach (e.g., for
events which cannot be repeated), it is
said that, for such uncertainty, we judge
it by using our mind. But how exactly
our mind perceives it, let alone manipu-
lates it (i.e., what is the calculus of sub-
jective probabilities?). Well, you might
say : it’s an old story and it has been
resolved long time ago! Note that, if
we adapt the current Bayesian calcu-
lus of subjective probabilities, then fre-
quentist and Bayesian statistics are just
two sides of the same coin (in the sense
that they use the same calculus of prob-
abilities).

While it has been known, also for
a long time, from experimental evi-
dence, that humans do not necessarily
manipulate their subjective “probabili-
ties” (uncertainties) according to Kol-
mogorov calculus, the paper [5] seems
to spell it out specifically as “uncer-
tainty appraisals” which could lead to
a “radical” calculus of subjective uncer-
tainty. We elaborate next the main mes-
sage in [5], namely“Subjective probabil-
ities are uncertainty appraisals” in so-
cial decision-making context, with em-
phasis on Bayesian statistics framework
in econometrics.

When facing, say, an epistemic un-
certainty (e.g., on an unknown parame-



Hung T. Nguyen/On the Calculus of Subjective Probability in Behavioral Economics 53

ter of a population), we take a “closer
look” at it, then use any information
we have about it to “appraise” it, i.e.,
how to describe the uncertainty a lit-
tle more precise for, say, actions in a
decision-making. Of course, as in gen-
eral thinking processes, humans tend to
use natural languages before numerical
languages. As such, an appraisal of an
uncertain situation should be a linguis-
tic variable in Zadeh’s sense [17], i.e., a
variable whose possible values are words
in a natural language. If the variable X
is an appraisal of uncertainties, then its
possible set of values could be “likely,
very likely, unlikely, ....” which can be
modeled as fuzzy subsets of the unit in-
terval [0, 1], i.e., fuzzy probabilities. In
this quantitative modeling process, the
subjective aspect of the appraisals is
reflected in the shapes of membership
functions of fuzzy probabilities.

When trying to model, say, the epis-
temic uncertainty concerning an un-
known parameter θ of a population (as
in standard practice of Bayesian statis-
tics), we view θ as a linguistic vari-
able instead. The parameter space Θ
(containing the true parameter) can be
coarsen into a fuzzy partition to provide
granular information about θ, i.e., a set
of possible linguistic values for θ, from
which we could consider granular infor-
mation of the form “θ is A is λ”, where
A is a fuzzy subset of Θ, and λ is a fuzzy
probability (e.g., “θ is “small” is likely”).

In order to “figure out” how to ma-
nipulate (in other words, how to derive
a calculus of) uncertainty appraisals,
it is necessary to dig into the model-
ing of membership functions of fuzzy
“probabilities”. Roughly speaking, say-

ing that something is, e.g., likely, is say-
ing that it is “possible” it is so. We
used to hear statements such as “some-
thing is improbable but possible”, re-
vealing that possibility is a weaker no-
tion than probability. Moreover, it
seems that a quantitative theory of pos-
sibility was first systematically formu-
lated by Zadeh [14]. See an update
in [1]. In the next section, we will pro-
ceed to advocate that the qualitative
approach to uncertainty appraisal in [5]
could be quantitatively formulated by
Zadeh’s possibility theory.

3 POSSIBILITY MEASURES

Probability theory (Kolmogorov) is
a quantitative theory of objective uncer-
tainty. The meaning of this uncertainty
is based on the notion of frequency, and
its calculus (i.e., the way probabilities
are combined) is based upon an anal-
ogy with measure theory in mathemat-
ics (with its main axiom of additiv-
ity). There are various different types
of uncertainty, e.g., subjective probabil-
ity, fuzziness. When trying to establish-
ing a quantitative theory for a kind of
uncertainty, we first examine carefully
the meaning of the uncertainty under
consideration, then from which, proceed
to postulate its calculus (i.e., axioms).
This is exemplified by Kolmogorov’s for-
mulation of (objective) probability the-
ory.

Now, the very reason that we are
concerned with uncertainty is decision-
making: how we make decisions in the
face of a type of uncertainty? The an-
swer to this question dictates an appro-
priate calculus for that type of uncer-
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tainty. It is “interesting” to ask whether
we should have an axiomatic theory of
uncertainty in advance or derive it from
experimental evidence?

Suppose in natural sciences, uncer-
tainty is objective so that we could
use the frequentist viewpoint to model
uncertainty as (Kolmogorov) probabil-
ity. Does that mean that its calculus
must always obey Kolomogorov’s calcu-
lus? Well, as we all know, one century
ago, that was not true in quantum me-
chanics: while the meaning of probabil-
ity is the same, the calculus of quan-
tum probability is different than that
of Kolmogorov (e.g., non additive and
non commutative). Note however that
quantum probability calculus is a gener-
alization of Kolmogorov probability cal-
culus.

Perhaps following physics, social sci-
entists have looked at various types
of uncertainties encountered in social
problems since quite some time, reveal-
ing various different calculi of uncertain-
ties (See [6] for a survey).

Now, it is well known that there is
a type of uncertainty, called epistemic
uncertainty in Bayesian statistics. The
quantitative modeling of this uncer-
tainty is called “subjective probability”
because of the following reasons. First
of all, it is subjective! The “probability”
of an uncertain phenomenon is varies
from person to person, and is used to
quantify the uncertainty to make deci-
sions. Secondly, it is only in your mind.
And, finally, it is called “probability”
since its calculus (axioms) is taken to be
exactly Kolmogorov’s calculus, despite
their difference in semantics (subjective
probabilities are not frequentist-based).

We have pointed out earlier why we are
led to a situation like this!

Is it the time to take a “closer look”
at the calculus of subjective probabil-
ities? say, in the “spirit” of quantum
physics! Here, we examine [5] and try to
figure out, in view of their “radical re-
formulation”of subjective probability in
behavioral economics and finance, what
should be a new and reasonable calculus
for subjective probabilities?

Since possibility measures, as rea-
sonable quantitative candidates for
“subjective probabilities” in social sci-
ences, seem new to social scientists, we
devote this entire section to a tutorial
on how the intuitive (and well-known)
notion of possibility arises in scientific
studies. Upfront, as stated earlier, we
are going to justify Zadeh’s possibility
theory. Possibility theory is a mathe-
matical theory of a weaker form of un-
certainty (possibility). While the in-
tuitive concept of possibility is famil-
iar in everyday language, it has not
been systematically used as a“scientific”
tool (like probability) in, say, decision-
making. Now, as mentioned above, the
“acceptable” notion of “subjective prob-
ability” (as Bayesians call it) seems to
resemble to possibility rather than prob-
ability (in [5], subjective probability is
not probability!), it is time to make it
clear: What is the calculus of subjec-
tive probability? i.e., how possibility
measures are axiomatized? (just like
objective probability measures are ax-
iomatized by Kolmogorov, from which,
their calculus follows). In the language
of Bayesian statistics, we are basically
talking about the “prior information” of
the true but unknown “parameter” θo in
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the parameter space Φ. We are going
to call it a “possibility distribution” of
θo, i.e., a function π(.) : Θ→ [0, 1] with
supθ∈Θ π(θ) = 1, where π(θ) represents
the possibility (a value in [0, 1]) that θ
is the true parameter. From π(.), the
notion of possibility that the true pa-
rameter is in a subset A ⊆ Θ is “postu-
lated” to be π(A) = supθ∈A π(θ). This
is Zadeh’s theory of possibility measures
[16].

We are going to justify the Zadeh’s
calculus of possibilities. Just like “sub-
jective probabilities”, possibilities are
somewhat subjective and are used to
specify“appraisals”for decision-making.
They can come from your mind (in fact,
based on your available information).
Now, in everyday language, probability
is often used to strengthen possibility,
so that there is some “intuitive” link be-
tween these two notions of uncertainty.
While, once the meaning of possibilities
is spelled out, their calculus could be de-
rived from the so-called “experimental
evidence”, we offer here a justification
based on the intuitive link of probabil-
ity and possibility.

Probability and possibility are some-
what related? We often say “that
some phenomenon is improbable but
possible”, meaning that possibility is a
weaker degree of belief. Typically, such
statement appears in situations where
we face coarse data (imprecise or low
quality data). Let (Ω,A, P ) be a prob-
ability space. Let Θ be a set. Sup-
pose when we perform an experiment,
we observe only the outcome in a sub-
set of Θ (rather than a precise value in
it), i.e., our random experiment is de-
scribed by a random set S(.) : Ω→ 2Θ,

so that our random variable of inter-
est X(.) : Ω → Θ is an a.s. selec-
tor of S. An event A ⊆ Θ is realized
(occured) if X(ω) ∈ A, but if we only
know that X(ω) ∈ S(ω), what can we
say? Well, if S(ω) ⊆ A, then A occurs,
but if S(ω) ∩ A 6= ∅, then it is possi-
ble that A occurs. Thus, we could take
π(A) = P (ω : S(ω) ∩ A 6= ∅) to quan-
tify the possibility that the event A oc-
curs, i.e., the possibility measure of the
event A. Since X is an almost sure se-
lector of S, we have {ω : X(ω) ∈ A} ⊆
{ω : S(ω) ∩ A 6= ∅}, and hence P (ω :
X(ω) ∈ A) ≤ P (ω : S(ω) ∩ A 6= ∅),
i.e., “probability is smaller than possi-
bility”, as expected. Let A = {θ} be
a singleton set, then the possibility of
θ is π(θ) = P (ω : S(ω) 3 θ), which
is the coverage function of the random
set S. Thus, formally, a possibility dis-
tribution is the coverage function of a
random set.

The question now is this. What is
the relation between π(θ) and π(A)? Of
course, you are thinking about a possi-
ble analogy with probability theory in
which π(θ) plays the role a a probability
denstity function, whereas π(A) plays
the role of a probability measure.

Now, let π(.) : Θ → [0, 1] such that
supθ∈Θ π(θ) = 1. Then there is a ran-
dom set S(.) on Θ such that P (ω :
S(ω) ∩ A 6= ∅) = supθ∈A π(θ), for each
A ⊆ Θ. In other words, there is a
canonical random set S whose coverage
function is precisely the possibility dis-
tribution function π(.), and the possi-
bility measure of any event A ⊆ Θ is
given as supθ∈A π(θ). Such a result jus-
tifies Zadeh’s postulates π(.) : Θ ∈ [0, 1]
with supθ∈Θ π(θ) = 1, and π(A) =
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supθ∈A π(θ), noting that π(∅) = 0.
Here is the proof. Let α(.) :

(Ω,A, P ) → [0, 1], uniformly dis-
tributed. Consider the random set S(.) :
(Ω,A, P ) → 2Θ which is the random-
ized level set of the function π(.) : Θ→
[0, 1], i.e.,

S(ω) = {θ ∈ Θ : π(θ) ≥ α(ω)},

Then, for A ⊆ Θ, we have

π(A) = P (ω : S(ω) ∩ A 6= ∅)

= P{ω : α(ω) ≤ sup
θ∈A

π(θ)}

= sup
θ∈A

π(θ),

Remark. From π(A) = supθ∈A π(θ),
we see that, in particular, the possibility
measure π(.) on 2Θ, is maxitive (rather
than additive), i.e., for any A,B, we
have π(A∪B) = max{π(A), π(B)}.It is
interesting to note that maxitive opera-
tor can arise from additive operator in
some limiting process. Let Pn, n ≥ 1 be
a sequence of probability measures on a
measurable space (Ω,A), and εn > 0,
with εn → 0 as n→∞. Then it is pos-
sible that the sequence of submeasures
P εn
n , n ≥ 1 converges to a (σ−) maxitive

set-function. Here is an example. Let
(Ω,A, P ) be a probability space, and
f(.) : Ω→ R+, f ∈ L∞(Ω,A, P ). Since
P is a finite measure, it follows that
f ∈ Lp(Ω,A, P ), for all p > 0. Con-
sider

Pn(A) =

�
A
|f(ω)|ndP�

Ω
|f(ω)|ndP

,

then, as n→∞,

[Pn(A)]
1
n =
||f1A||n
||f ||n

→ ||f1A||∞
||f ||∞

,

where the set function π(A) =
||f1A||∞
||f ||∞

is (σ−) maxitive.
Of course, if we“consider”a function

π(.) : Θ → [0, 1] with supθ∈Θ π(θ) = 1,
and call it our possibility distribution
(just like “probability density”, where
“possibility” reflects our “subjective” as-
signments/ appraisals), then our possi-
bility measure of A ⊆ Θ is taken to
be π(A) = supθ∈A π(θ), although we
do not need to relate it to the notion
of probability. In other words, uncer-
tainties might not need to be a function
of probability. For example, a function
π(.) as above plays the role of a mem-
bership function of a fuzzy subset of Θ,
generalizing ordinary subsets of Θ (see
[15] for more discussions on how to ob-
tain possibility distributions in applica-
tions). What we have done above is to
give a meaning to the concept of possi-
bility distribution (from which possibil-
ity measures are built), namely“a possi-
bility distribution is the coverage func-
tion of a random set”. If you refer to the
concept of confidence intervals in statis-
tics, then you realize the flavor of “sub-
jective” assessments.

It is interesting to note that, for-
mally, the concept of possibility dis-
tribution is somewhat “hidden” within
probability theory! In fact, the notion of
possibility distribution“appears”also in
probability theory as limits of probabil-
ities. When X is an absolutely continu-
ous random variable, e.g., taking values,
say, in R = (−∞,∞), with distribution
function F (x) = P{ω : X(ω) ≤ x},
then its density function value
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f(x) = lim
h→0

F (x+ h)− F (x− h)

2h

= lim
h→0

P{ω : x− h ≤ X(ω) ≤ x+ h})
2h

can be interpreted as a possibility value
(and not a probability value). For ex-
ample, in the context of Bayesian statis-
tics, when the parameter space is Θ =
[0, 1], the uniform prior density f(θ) =
1, for any θ ∈ [0, 1] is a possibility dis-
tribution, resulting in supθ∈A f(θ) = 1
for any A ⊆ [0, 1]. And this can be
applied to unbounded parameter spaces
like R = (−∞,∞) with a possibility
distribution f(θ) = 1, for any θ ∈ R,
without “calling” it an improper prior
probability density function !

To be complete, we mention here
that possibility measures can be also in-
terpreted as limits of probability mea-
sures in the large deviation convergence
sense (See [8], [11]).

Recall that the purpose of the study
of large deviations in probability theory
is to find the asymptotic rate of conver-
gence of sequences of probability mea-
sures of rare events. For example, in the
simplest setting, while the law of large
numbers asserts that the sequence of
sample means (of i.i.d. Xj, j ≥ 1, with

EX = µ, V ar(X) = σ2 < ∞) Xn con-
verges surely to µ, it is also of interest to
find the rate at which P (|Xn − µ| > a)
(probability of large deviations from the
mean) goes to zero, as n→∞, for some
a.

Now, for Zn =
√
n(Xn − µ)/σ, we

have, by the Central Limit Theorem,

P (Zn > x) ≈
� ∞
x

1√
2π
e−

t2

2 dt

By finding the asymptotics of this
integral for x → ∞, we arrive at the
well-known Cramer result of the form :
The sequence of sample means satisfies
the large deviation principle in the sense
that, for ε > 0, we have

P (|Xn − µ| > a) ≤ e−nh(a)+ε

for n sufficiently large, where the ex-
ponential rate of convergence being
e−nh(a).

The general setting of large devi-
ation principle is this. Let Θ be a
complete, separable metric space, and
B its borel σ−field. A sequence of
probability measures Pn on (Θ,B) is
said to obey the large deviation prin-
ciple (LDP) if there exists a lower semi-
continuous function I(.) : Θ → [0,∞]
(the rate function) such that :

(i) for each closed set F of Θ,

lim sup
n→∞

[
1

n
logPn(F )] ≤ − inf

θ∈F
I(θ)

(ii) for each open set G of Θ,

lim sup
n→∞

[
1

n
logPn(G)] ≥ − inf

θ∈G
I(θ)

If we let ϕ(A) = supθ∈A e
−I(θ), then

the LDP is formulated as

lim sup
n→∞

[Pn(F )]
1
n ≤ ϕ(F )

and

lim sup
n→∞

[Pn(G)]
1
n ≤ ϕ(G)
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If we refer the above to the Port-
mamteau theorem of weak convergence
of probability measures, we can view the
set function ϕ(.) as a limit of Pn in the
sense of LDP.

Remark. Since the possibility dis-
tribution ϕ(θ) = e−I(θ) is upper semi-
continuous (with values in [0, 1]), the
associated possibility measure ϕ(.) char-
acterizes the probability distribution of
a random closed sets on Θ (See [9] for
details).

In summary, a possibility distribu-
tion (for an appraisal) is a function
π(.) on an arbitrary set Θ, taking val-
ues in the unit interval [0, 1], such that
supθ∈Θ π(θ) = 1. Its associated possi-
bility measure, denoted also as π(.), is
a map from the power set 2Θ of Θ to
[0, 1], defined by π(A) = supθ∈A π(θ),
for A ⊆ Θ. Equivalently, a possibility
measure is a map π(.) : 2Θ → [0, 1]
such that π(∅) = 0, π(Θ) = 1, and
π(∪i∈IAi) = supi∈I π(Ai), for any index
set I.

Remark. For a general theory of
idempotent probability, see [11].

4 BAYESIAN ANALYSIS WITH
POSSIBILITY MEASURES

First of all, in the context of
Bayesian statistics, the additional in-
formation required is a prior proba-
bility measure (or often a probabil-
ity density function) on the parame-
ter space, reflecting the subjective in-
formation about the possible location
of the true (but unknown) parameter
of the population. Such an informa-
tion is quite compatible with a possibil-
ity distribution where the value of the

possibility distribution of an element in
the parameter space acts as the degree
of membership of that element in the
statistician’s perception.

Secondly, while the literature did
contain research works on the possi-
bility to consider “Bayesian statistics”
where both prior and objective proba-
bility measures are replaced by possi-
bility measures, it seems that the more
practical situation where the prior sub-
jective (epistemic) uncertainty is pos-
sibilistic, but the objective uncertainty
(in the statistical models) remains Kol-
mogorov is not completely worked out.
This is the situation where two different
types of uncertainty calculi need to be
combined!

The paper [5] is, in a sense, a con-
firmation of [2], from an original idea
in [16]. And now, with all necessary
justifications spelled ont in the previous
section, it is about time to see how “tra-
ditional”Bayesian statistics is affected?!
This will happen clearly when we simply
replace the calculus of subjective prob-
abilities by the calculus of possibilities
in the formulation of the “Bayes the-
orem”, combining objective probability
with subjective probability.

A situation closely related to what
we wish to discuss here is robust
Bayesian statistics, as exemplified by
[12]. In a sense, robust Bayesian in-
ference refers to the situation where we
consider a set of possible priors (say, as
prior probability measures on the pa-
rameter space) rather just one given
one. Specifically, let P be a set of prob-
ability measures on (Θ,B(Θ)). With-
out knowing a specific prior in P , we
must work with the lower and upper en-
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velops of P , i.e., the non-additive set-
functions L(.) = infP∈P P (.), U(.) =
supP∈P P (.), respectively. However, for
each P ∈ P , we can use Bayes theorem
to get the corresponding posterior prob-
ability measure. Bounds on these pos-
terior probability measures can be ob-
tained from L(.) and U(.). Specifically,
as in [12], these bounds are expressed
as (Choquet) integrals of monotone in-
creasing set functions (called Choquet
capacities) L(.) and U(.), as a general-
ization of ordinary integral calculus.

Now, in one hand, possibility mea-
sures are Choquet capacities, and on
the other hand, if we view a possibil-
ity measure π(.) as the envelop of a

set of prior probability measures P , i.e.,
say, P = {P : P (.) ≤ π(.)}, then
we can proceed as in [12], noting that
a possibility measure π(.) is , in par-
ticular, maxitive, i.e., for A,B in 2Θ,
π(A∪B) = max{π(A), π(B)}. But, any
such set-function is “alternating of infi-
nite order” (and hence, in particular, 2-
alternating), i.e., for any A1, A2, ..., An ,
we have

π(∩ni=1Ai) ≤
∑

∅ 6=I⊆{1,2,...,n}

(−1)|I|+1π(∪i∈IAi)

where |I| denotes the cardinality of the
set I. For a proof, see [9].

In general, the problem seems open.
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